

REFRIGERATED TRUCK VENDOR SELECTION: A MATHEMATICAL MODELLING APPROACH

Sofyan Wahyudi^{1*}, Muhamad Atho Rifaitulloh²

 ¹Department of Industrial Engineering, BINUS Graduate – Master of Industrial Engineering, Bina Nusantara University, Jakarta, 11480
 ²Department of Industrial Engineering, Graduate Program – Master of Industrial Engineering, Mercu Buana University, Jakarta, 11650

ABSTRACT

Facing the post-Covid-19 pandemic era, food companies are starting to received orders for their products from various regions in Indonesia, this is because food is a basic need, therefore when public activities outside are allowed, food products have an increase in demand. One of the important processes is the distributing goods from producers to consumers. This research was conducted on a food company whose products must be stored in the range of 5-10 degrees celsius. Indonesia is an archipelagic country where each region has different road characteristics, accordingly it is essential for companies to select reliable refrigerated truck vendors. This study aims to prove whether the mathematical approach can be used to a refrigerated truck vendor by predicting their performance according to the company's needs. At the end of the research, the assessed vendors will be divided into two categories, namely efficient vendors who will be retained and inefficient vendors who will be fostered or replaced with other vendors.

Keywords: vendor selection; food company; mathematical modelling; linier regression.

1. Introduction

Facing the post-Covid-19 pandemic era, food companies are starting to received orders for their products from various regions in Indonesia, this is as a result of the improving economy, so there is an increase in the need for various food products as a basic need (Barman et al., 2021).

One of the food products that has increased is dairy food products, because they have good health benefits, and what is important is the distribution process using refrigerated trucks that have a temperature range of 5-10 degrees Celsius with the aim of maintaining the benefits that exist in the product when it is received by the consumer. Indonesia has various characteristics of distribution channels for goods (Hadiguna et al., 2014), so the distribution process must be analyzed properly, one of which is the selection of refrigerated truck vendors.

The mathematical model that will be used to predict vendor assessments is the linear

E-mail: <u>sofyan.wahyudi@binus.ac.id</u> Phone: +6285647443477 regression method, this choice is due to the fact that the goal of the conventional regression analyzes is: (a) to find an appropriate mathematical model and (b) to determine the best fitting coefficients of the model from the data (Kazemi & Hosseinzadeh, 2012).

This study aims to prove whether the mathematical approach can be used to a refrigerated truck vendor by predicting their performance according to the company's needs when accepting a new project.

The data will collect from dairy food company (PT. ABC) that located in Bekasi. There are currently five refrigerated truck vendors in this company.

In this linear regression, there are two variables that are used as prediction calculations, namely the effect variable (Y) is the value of the quality or performance of the refrigerated truck vendor and the causal variable (X) is the number of distributions (Uyanik & Güler, 2013).

The obtained equations will be tested for accuracy using MAPE, it is another performance metric for regression models (Kumari & Yadav, 2018), having a very intuitive interpretation in

^{*)} Corresponding Author.

terms of relative error: due to its definition, its use is recommended in tasks where it is more important being sensitive to relative variations than to absolute variations (De Myttenaere et al., 2016).

2. Research Methods

2.1. Research Framework

The research framework is depicted in Figure 1. In the first stage, the data collection are explored. Scholars had defined the number of distributions as the causal variable (X) and the quality value as the effect variable (Y). We collected data from food industry vendors which delivers food products by refrigerated truck. A pre-processing stage is provided to ensure data is ready to analyze, therefore we analyze data to be final score of vendor performance, therefore we can decide X and Y, additionally based on the data we can look for linear regression equation. To prove the linear accuracy of the regression, MAPE was used. Below are details stage of the data processing stage.

Figure 1. Research Framework

2.2. Linier Regression Method

Linear regression can be used as a simple tool to study the linear relationship between the dependent variable and independent variables (Bakar & Tahir, 2009). It can be concluded that linear regression can be used to forecast the right vendor for future projects.

The formula for Linear Regression with the least squares or simple method is:

$$a = \frac{(\sum Y_i)(\sum X_i^2) - (\sum X_i)(\sum X_iY_i)}{n\sum X_i^2 - (\sum X_i)^2}$$
(1)

$$b = \frac{n \sum X_i Y_i - (\sum X_i) (\sum Y_i)}{n \sum X_i - (\sum X_i)^2}$$
(2)

$$Y = a + b X$$
 (3)

The causal variable (X) is the number of distributions, and the effect variable (Y) is the value of the performance of the vendor, a is a constant that indicates the magnitude of the value of variable Y if X = 0, and b is the magnitude of the change in the value of Y.

2.3. Accuracy Test

A prediction must be analyzed for accuracy, in this case the linear regression method can be analyzed how big the deviation is. The prediction model can be tested for accuracy by calculating the magnitude of the error or deviation between the actual data and the predicted data (Montgomery et al., 2021). In calculating the deviation of a mathematical model used for prediction, we can use a statistical indicator of accuracy, namely the mean absolute percentage error (MAPE), this index indicates an average of the absolute percentage errors (Equation 4), the lower the MAPE, the higher is the accuracy (Chen et al., 2018).

Here is the MAPE formula:

MAPE =
$$\sum_{t=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\%$$
 (4)

Any forecast with a MAPE value of less than 10% can be considered highly accurate, in detail we can see in table 1.

Table 1. Table of MAPE percentage (Kenneth &Ronald, 1982)

Value	Accuracy
Less than 10 %	Highly Accurate
11-20 %	Good
21-50%	Reasonable
More than 50%	Inaccurate

3. Results and Discussion

In this section, the researcher collects data on the performance appraisal of the refrigerated truck vendor PT. ABC, which consists of five transportation companies for four years, from January 2018 to December 2021.

The causal variable (X) in this study is the amount of distribution of goods from the warehouse of PT. ABC to distributor warehouses located in several big cities in Indonesia, which are then categorized into five areas namely Sumatra, Java & Bali, Kalimantan, Sulawesi, and Papua.

The performance assessment data from the five vendors is then pre-processed to get the final value which is then called the quality value which is used as a result variable (Y).

Based on research conducted in measuring vendor performance in the food industry, there are five assessment criteria, namely price, customer care, quality, on time delivery, quantity (Wahyudi & Asrol, 2022). After collecting existing assessment data and brainstorming with the company (PT. ABC), here we can see the description of each criterion and the weight of the assessment in table 2.

Table 2. Table of Refrigerated Truck VendorPerformance of PT. ABC (2018-2021)

Criteria	Description	Weight
Price (P)	Total cost billed by	25%
	vendor	
Customer	Service for update	15%
Service	delivery & complaintsan	
(CS)		
Quality	Cleanliness and	20%
(Q)	suitability of	
	temperature (5-10	
	degrees celsius)	
On Time	On time delivery	20%
Delivery	according to lead time	
(OTD)		
Quantity	The number of goods	20%
(QTY)	received is in	
	accordance with the	
	goods sent	

The final performance score of each vendor in table 3.

Table 3. Table of Refrigerated Truck Vendor
Performance of PT. ABC (2018-2021)

РТ	Area	Р	CS	Q	OTD	QTY	Y
		25%	15%	20%	20%	20%	
	Sumatera	81	82	76	73	74	77
	Java & Bali	83	83	82	83	78	82
AAA	Kalimantan	78	78	74	72	79	76
	Sulawesi	81	84	72	78	76	78
	Papua	79	79	74	71	78	76
	Sumatera	80	82	76	74	74	77
	Java & Bali	83	81	85	85	86	84
BBB	Kalimantan	78	74	71	70	77	74
	Sulawesi	77	71	70	70	71	72
	Papua	78	74	75	70	73	74
	Sumatera	81	76	73	71	73	75
	Java & Bali	80	82	85	89	79	83
CCC	Kalimantan	82	81	77	79	81	80
	Sulawesi	78	82	70	78	74	76
	Papua	79	80	72	72	73	75
	Sumatera	82	79	72	77	78	78
	Java & Bali	88	89	89	89	88	89
DDD	Kalimantan	81	82	73	72	76	77
	Sulawesi	80	81	78	77	77	79
	Papua	78	71	70	70	70	72
	Sumatera	83	79	78	77	76	79
	Java & Bali	81	80	77	77	79	79
EEE	Kalimantan	84	79	71	70	71	75
	Sulawesi	80	71	71	72	70	73
	Papua	81	79	70	70	71	74

3.1. Vendor AAA

Vendor AAA is a transportation company located in Bekasi, West Java. It has 15 refrigerated trucks.

These vendors distribute goods to five areas throughout Indonesia. In table 4 the number of distributions of goods for four years by AAA vendors is included in the causal variable (X), then the performance or quality value is included in the effect variable (Y), the multiplication results of each variable will produce XX and YY values.

Table 5 will show the results of calculations using formula (1) and formula (2) to find the values of a and b, which results in the equation Y with formula (3).

Similar to AAA vendors, other vendors (BBB, CCC, DDD, EEE, FFF) also use the same calculation to find the values of a and b, thus the Y equation will be generated, which will later be tested for accuracy using MAPE. **Table 4**. Table of Calculation for Vendor AAA

Area	Distribution (X)	Performance (Y)	XY	XX
Sumatera	27	77	2079	729
Java & Bali	188	82	15416	35344
Kalimantan	21	76	1596	441
Sulawesi	19	78	1482	361
Papua	11	76	836	121

Table 5. Table of Liner Regression EquationCalculation Vendor AAA

Constant	Value
a	76.13
b	0.03
Persama	aan Y
Y = 76.13 +	- 0.03 (X)

3.2. Vendor BBB

Vendor BBB is a transportation company located in Karawang, West Java. have about 18 refrigerated trucks.

Table 6. Table of Calculation for Vendor BBB

Area	Distribution (X)	Performance (Y)	XY	XX
Sumatera	23	77	1771	529
Java & Bali	201	84	16884	40401
Kalimantan	18	74	1332	324
Sulawesi	19	72	1368	361
Papua	9	74	666	81

Table 7. Table of Liner Regression EquationCalculation Vendor BBB

Constant	Value
a	72.48
b	0.06
Persama	an Y
Y = 72.48 +	0.06 (X)

3.3. Vendor CCC

Vendor CCC is a transportation company located in Pulogadung, Jakarta. have about 14 refrigerated trucks.

Table 8. Table of Calculation for Vendor CCC

Area	Distribution (X)	Performance (Y)	XY	XX
Sumatera	25	75	1875	625
Java & Bali	176	83	14608	30976
Kalimantan	14	80	1120	196
Sulawesi	22	76	1672	484
Papua	8	75	600	64

Table 9. Table of Liner Regression EquationCalculation Vendor CCC

Constant	Value
a	76.45
b	0.04
Persama	an Y
Y = 76.45 +	0.04 (X)

3.4. Vendor DDD

Vendor DDD is a transportation company located in Bogor, West Java. have about 9 refrigerated trucks.

Table 10. Table of Calculation for Vendor DDD

Area	Distribution (X)	Performance (Y)	XY	XX
Sumatera	27	78	2106	729
Java & Bali	195	89	17355	38025
Kalimantan	18	77	1386	324
Sulawesi	14	79	1106	196
Papua	5	72	360	25

Table	11.	Table	of	Liner	Regression	Equation
Calcula	ation	Vende	or E	DDD		

value
75.04
0.07
n Y
0.07 (X)

3.5. Vendor EEE

Vendor EEE is a transportation company that the farthest vendor location from PT ABC, the address in Bogor, West Java. have about 12 refrigerated trucks.

Area	Distribution (X)	Performance (Y)	XY	XX
Sumatera	29	79	2291	841
Java & Bali	231	79	18249	53361
Kalimantan	16	75	1200	256
Sulawesi	14	73	1022	196
Papua	10	74	740	100

 Table 12. Table of Calculation for Vendor EEE

Table 13. Table of Liner Regression EquationCalculation Vendor EEE

Constant	Value	
a	73.69	
b	0.02	
Persamaan Y		
Y = 73.69 + 0.02 (X)		

Based on the linear regression equation from each vendor, then use formula (4) to find the percentage value of the mean absolute percentage error (MAPE) from each vendor, it can be seen on table 14.

Table 14. Table of Equation Accuracy Results

Vendor	MAPE
AAA	0.73%
BBB	3.94%
CCC	2.47%
DDD	3.74%
EEE	4.29%

4. Conclusions

In this study, the use of linear regression method in the selection of refrigerated truck vendors at PT. ABC for future projects can be concluded in the very good category, so that it can be used and applied. This is evidenced by the MAPE value below 10%.

The linear regression method is proven to be used as a decision-making tool to get the maximum service quality of refrigerated truck vendors.

In future research, the researcher proposes to compare this method with other mathematical methods and then compare the level of accuracy.

5. References

- Bakar, N. M. A., & Tahir, I. M. (2009). Applying Multiple Linear Regression and Neural Network to Predict Bank Performance. International Business Research, 2(4), 176-183.
- Barman, A., Das, R., & De, P. K. (2021). Impact of COVID-19 in Food Supply Chain: Disruptions and Recovery Strategy. Current Research in Behavioral Sciences, 2, 100017.
- Chen, J. F., Do, Q. H., Nguyen, T. V. A., & Doan, T. T. H. (2018). Forecasting Monthly Electricity Demands by Wavelet Neurofuzzy System Optimized by Heuristic Algorithms. Information, 9(3), 51.
- De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for Regression Models. Neurocomputing, 192, 38-48.
- Hadiguna, R. A., Kamil, I., Delati, A., & Reed, R. (2014). Implementing a Web-based Decision Support System for Disaster Logistics: A Case Study of an Evacuation Location Assessment for Indonesia. International Journal of Disaster Risk Reduction, 9, 38-47.
- Kazemi, A., & Hosseinzadeh, M. (2012). A Multilevel Fuzzy Linear Regression Model for Forecasting Industry Energy Demand of Iran. Procedia-Social and Behavioral Sciences, 41, 342-348.
- Kenneth, D. L., & Ronald, K. K. (1982). Advances in Business and Management Forecasting. Bingley, UK: Emerald Books.
- Kumari, K., & Yadav, S. (2018). Linear Regression Analysis Study. Journal of the Practice of Cardiovascular Sciences, 4(1), 33.
- Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis. John Wiley & Sons.
- Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia-Social and Behavioral Sciences, 106, 234-240.
- Wahyudi, S., & Asrol, M. (2022). Designing A Supplier Evaluation Model in The Cheese Industry Using Hybrid Method. Academic Journal of Manufacturing Engineering, 20(2).